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Self-avoiding rings on the triangular lattice 

I G Entingt and A J Guttmann 
Department of Mathematics, n i e  University of Melboume, Parkville, Vic'MS2, Australia 

Received 12 December 1991 

AbstrscL n e  finite lattice method of series expansion is used lo extend the enumeration 
of self-avoiding plygons on the triangular lattice thmugh to rings of 35 steps. We also 
give the enumeration of these triangular polygons gmuped ty perimeter and area of up 
lo 21 unit triangles for perimeters up to 24 steps 

1. Introduction 

The enumeration of self-avoiding rings (polygons) on regular lattices has proved to be 
one of the more difficult problems in lattice statistics. The only exactly known results 
are the connective constant and critical exponents for polygons on the honeycomb 
lattice (Nienhuis 1982, 1984). The exponents 01 = $ and v = $ are assumed to apply 
to all other two-dimensional lattices. A number of inequalities involving plygon 
statistics are known but essentially all other information on the problem comes from 
the analysis of enumerations of finite polygons, Le. from series expansions of the 
polygon generating function. 

In two dimensions, a major improvement in the derivation of polygon series was 
made by Enting (1980) who extended the square lattice enumeration of polygons from 
24 steps to 38 steps using a finite lattice method. This enumeration was extended 
to 46 steps by Enting and Guttmann (1985) who also enumerated polygons of up to 
48 steps on the L and Manhattan lattices. Using the same technique, Guttmann and 
Enting (1988) extended the square lattice series to 56 steps. This work also gives 
series for the spanning momenu of polygons on the square lattice. More recently, 
Enting and Guttmann (1989) have extended the polygon series on the honeycomb 
lattice from 34 steps to 82 steps, and most recently we have enumerated square 
lattice polygons by both perimeter and area for perimeters up to 42 and areas up to 
U) (Enting and Guttmann 1990). 

In the various applications of the finite lattice method, the honeycomb, L and 
Manhattan lattices were treated as sublattices of the square lattice and so the orig- 
inal finite lattice algorithm of Enting (1980) could be applied with relatively minor 
modifications. However it has not been possible to extend the triangular lattice poly- 
gon series by treating the lattice as a square lattice with some diagonal bonds with 
the enumeration algorithm otherwise unchanged. Such an approach can sometimes 
be useful for low-temperature series (see for example Enting and Wu 1982) but ir, 
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less suitable for high-temperature series. For high-temperature series (which polygon 
series closely resemble), the inclusion of extra bonds increases the computational re- 
quirements to such an extent that the original form of the finite lattice method of 
plygon enumeration could barely compete with direct graph counting. 

The use of the finite lattice method to enumerate polygons involves two distinct 
combinatorial problems. The first problem is the enumeration of classes of polygon 
embedded in the finite lattices. The second problem is that of combining the enu- 
merations from finite lattices to produce the (truncated) generating function for the 
infinite lattice limit. In using the finite lattice method to enumerate polygons on the 
triangular lattice, both these combinatorial problems must be approached differently 
from the square lattice case. Firstly, the enumeration of polygons on the finite lattice 
uses a ‘site’ representation rather than the ‘bond’ representation used in all previ- 
ous work. This new approach is described in section 2; this change enabled us to 
extend earlier series (Sykes el a1 1972) from 18 to 25 steps as reported by Enting 
and Guttmann (1990). Secondly, in the present work, the finite lattice generating 
functions are evaluated for various hexagonal finite lattices rather than the rectan- 
gles used in our previous calculations. The combinatorial relations for combining 
such finite lattice generating functions are described in section 3. These relations are 
generalizations of those described by Enting (1987), modifed to take account of the 
special way in which the finite lattice generating functions for polygons are defined. 
Combining these two extensions of the finite lattice method has enabled us to extend 
the perimeter generating function for polygons on the triangular lattice to 35 steps. 
Section 4 presents an analysis of the resultant series. 

4 

2. Finite lattice enumerations of polygons 

The finite lattice method requires the solution of lattice statistics problems on finite 
lattices. For lattice statistics problems such as the Potts model, the local nature of the 
interaction makes it easy to build up  a finite lattice one site at a time. The polygon 
enumeration problem is one of greater difficulty. If one considers the structure of 
the polygon in an isolated region (a Eulerian representation in kinematic terms) then 
the requirement that a set of bonds form a closed ring is a non-local constraint. If 
one follows the steps of the polygon (a Lagrangian representation) then the self- 
avoidance is a non-local constraint. However the polygon enumeration problem does 
exhibit some degree of localization in the constrainrs. This is shown most easily in 
two dimensions. If one draws a transect line cutting the polygon as shown in figure 
1 then 

(i) the self-avoidance constraint acts independently on each side of the transect 
line; and 

(ii) if the graph is to be a self-avoiding polygon then the connectivity of the loops 
on one side of the transect line uniquely specifies the connectivity of the loops on 
the other side of the transect line. 

These two properties are sufficient to enable us to enumerate polygons using a 
transfer matrix method. On constructs a generating function p,,( T )  which enumerates 
all polygon segments to the left of line, T ,  that intersect T in a specific manner 
identified by the index U. I f  one has two transect lines S and T ,  as shown in figure 
1, and M,,, , ,(S,T) is the number of ways in which a segment intersecting T with 

_- 
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T S  
I I  

Figure 1. Ttansecl lines (broken) inlersecling an I I 
I I arbitmy polygon. 

index v can be extended to intersect S with index U' then 

Moving a transect line in a series of steps 7;, . . . , TN gives 

so that the generating function for polygons in a finite region can be constructed 
from a null starting wlue by a series of operations multiplying a state vector p" by 
a succession of matrices. If the successive transect lines are almost identical so that 
only a single site is added at each step, then the matrices Mu,,( S, T )  become very 
simple and extremely sparse and so need not be stored explicitly. The computational 
effort then grows in proportion to the size of the state vectors. When classifying 
polygons in terms of their numbers, m, of steps, a variable I"' is included in the 
definitions of the state vectors and transfer matrices so that the components p , ( T )  
are truncated series in 2. Similarly a variable y" can be included to classify polygons 
in terms of area. 

In previous applications of the finite lattice method, the transect lines were drawn 
on the dual lattice so as to pass through the centre of each bond. Inspection of figure 
2 shows that for a given width of lattice, applying such an approach on the triangular 
lattice would result in about twice as many bond intersections as on the square 
lattice. Therefore, the dimension of the state vector for the triangular enumeration 
would be approximately the square of the corresponding square lattice State vector 
dimension. Tb avoid such a catastrophic increase in complexity we use transect lines 
that effectively split sites as shown in figure 3. This leads us to consider four types of 
points of (possible) intcrsection between polygon segments and the transect line as 
shown schematically in figure 4. "pe 0 is a point on the transect line at which the 
left-hand segment of the polygon is absent. ?pes 1 and 2 are points at which the 
polygon crosses the transect line and type 3 is a point at which the left-hand segment 
touches the transect line but does not cross it. As in the square lattice case, types 
1 and 2 are distinguished so that the connectivity of the segment is specified. Each 
loop will aoss the transect line twice. The upper intersection is of type 1 and the 
lower intersection is of type 2. Thus, as shown by Enting (1980), the use of labels '1' 
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FlpAm Z If the m n x a  line is dram on the dual 
lalticc, then for Gxed width w, the triangular lalticc 
has almosl twice as many inlemedions BS the quare 
lattin. 

Flgun 3. Schematic representation OI how the mn- 
sect line used in this work cuu through sites rather 
than bonds. 

I 

I c’ 
FlpAre 4 Exampla of mndguralions on intersec- 
lions of the left side of the plygon and lhe m n x c l  
line. 

Flgure 5. ?he Iwo stages of adding a site lo the 
finite l a t t i n .  Fintly three new bond positions are 
occupied in each allowed way and assigned types ‘1’ 
or ‘2’ acmrding lo table 2. Slates of sites ‘a’ and 
%’ are changed BS specified in table 2. b n d l y  
the new site ‘b’ U asrigned a type, acmrding lo 
table 4 and the resulting mntribution lo the pr-  
tial generaling funclion is processed BS indicated in 
uble 4. 

and ‘2’ on bonds that cross the transect line is sufficient to specify the connectivity of 
the polygon segment to the left of the transect line. 

In building up generating functions for polygons, we need to consider all possible 
combinations of intersection labels and map these onto an index set [U). The labels 
nj are assigned to sites 0 to W and take values 0, 1, 2, 3. If we define 
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then we require 

uj(l) 2 u j ( 2 )  for all j (2.26) 

uw(1) = a w ( 2 ) .  (2.W 

and 

The constraints on the ‘1’ and ‘2’ labels are the Same as in our earlier work. The 
difference is that in the present case we allow the ‘3’ state. Tible 1 lists the number 
of allowed combinations of labels for various values of W and also shows the order 
to which the triangular lattice generating function can be evaluated if strips of width 
< W are used. 

Tpbk t I h e  number of elements, Ip(T)I, in the state vector, p ( T )  and the order 
10 which triangular latlice polygons mn be obtained using square bllice and triangular 
lattice inclusionJexclusion relations, as a funclion of Srip width W .  2 W + 3 gives the 
madmum perimeter of polygons lhat a n  be enumerated using strips of width W in Ihe 
rectangular symmetly formalism and incorporating the mrrection of 2 in the last term. 
p = 3 W + 2 gives the maximum perimeter of polygons that can be enumerated using 
lattices of width W and the triangular symmetry formalism. IA(p)( gives the cumulated 
number of hexagons with perimeter < p. I{a(n)}l is the armulaled number d mnonical 
hexagons and I{b(n)}l is the number of hexagons with non-zem weight. 

1 4 4  
1 14 6 
3 42 8 
4 132 I O  
5 429 12 
6 1430 14 
7 4862 16 
8 I6796 I8 
9 58786 20 

10 208012 22 
I I  7 4 2 9 0  2.5 

5 I1  3 5 
8 50 12 22 
II 138 27 54 
I4 348 56 I21 
17 590 96 200 
20 I035 161 337 
23 I682 243 482 
2h 2m M4 709 
29 3837 510 936 
32 
35 

The elementaly step in our earlier enumerations was the addition of a single new 
site and two new bonds. On the triangular lattice it is convenient to divide the basic 
step as shown in figure 5, firstly adding up to two new bonds in the three possible 
positions and then assigning them labels and secondly linking the bonds at the new 
site and determining the label of this new site. 

The various possible results are shown in tables 2 and 3. The types of the bond 
that can be added depends on both the type and position of the site to which the 
bond is added. The possible cases are listed in table 2 which also shows that type 3 
sites cannot have bonds added. The other constraint is that at most two of the three 
new bonds added to the three preceding sites are allowed to be occupied. ’Ihble 3 
shows the way in which the label of the site in positions ‘a’ and ‘c’ changes with the 
addition of new bonds. After the second part of the basic step, site ‘b’ is no longer 
on the transect line, being replaced by the new site. 

The type of the new site is determined by the rules shown in table 4. There are 
WO aspects to this table. The first is the ’ype (0, 1, 2 or 3) of the new site; the second 
is the way in which the resulting state vector is manipulated. The various possibilities 
are: 
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‘hbk I Changes in Site lype due lo adding bonds I” sites in p i l i o n  a and c. for 
various values of lhe original sile index. Bonds cannot be atended f“ sites of type 3. 

Old site value 0 1 2 

Position a 2 3 3  
Position c 1 3 3  

’hbk 3. Bond lype for tonds added to siles of various lypes in psilions a. b and c 
Bonds cannot h added to sites of ’ype 3 nor 10 site b if ils lype is 0. 

Old site value 0 I 2 

Position a I 1 2  
Position b ’ 1 2  
Position c 2 . I  2 

(i) New wcIor: Accumulate the product r m p , ( T )  into the running total for the 
new vector component ~ ” ~ ( 7 ” )  with U’ derived from the labels for v with the states 
of sites ‘a’ and ‘c’ replaced by the values taken from table 3 and the state of site ‘b’ 
replaced by the state of the new site, determined from table 4 using bond states that 
are determined from table 2. 

(ii) Accumulale: Accumulate b ( n ) z m p u (  T) into the running total for the triangu- 
lar lattice polygon generating function where b ( n )  is the weighting factor determined 
according to section 3 below. 

(iii) Change 1: (This occurs when two bonds of type ‘2’ are connected.) Construct 
a new label set as described in (i) and then transform it by working through decreasing 
site positions (starting at the new site) and transforming the first unmatched ‘1’ to a 
‘2’. 

(iv) Change 2 (This occurs when two bonds of type ‘1’ are connected.) As for 
(U) but work through increasing site positions changing the first unmatched ‘2‘ to a 
‘1’. 

The topological basis for these transformation rules is illustrated by Enting (1980). 
The construction is initialized by setting column -1, the column immediately 

outside the left of.the finite lattice, so that the configuration with all sites in state 3 
has weight 1 and all other configurations have weight 0. These rules entail a change 
from the approach used in previous studies. Previously we required the polygons to 
span the length of the finite lattice. The present rules simply require the polygon to 
be in contact with the right-hand end of the finite lattice. 

The elementary step shown in figure 5 adds two triangular faces to the finite 
lattice. It is straightforward to determine whether one or both of these faces lies 
inside the partly completed polygon. This involves looking at the whole of the vector 
index describing the bond intersections and not merely the local bond states. Once 
this is done an extra variable ?J can be included to give a yarea dependence for 
enumerating polygons by both area and perimeter. The changes to the algorithm are 
minor but the costs in computation and storage involved in carrying the additional 
information about areas restricts the length to which we can derive such two-variable 
series. 
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lhhk 4 Slate of new site for various combinations of bonds ' h e  uiples [ z ,  y. 4 denote 
the States of bonds from Ule a, b and c sites respectively, with 0 denoting the absence 
of a bond. n e  - denotes accumulating lhe left-hand side into the running mm1 of the 
right-hand side. In lhe semnd row, b(n)  is the weighting factor for the current hexagon. 
'Change 1' and 'Change 2' refer lo vansformation of lhe index BS described in the text. 
Once this is done, and in lhe other cases, lhe i n d a  q is derived form Y by using the 
new Site 'b' as specified in lhe Second mlumn lo replace the old Site ' b  and using new 
values for sites 'a' and IC* a s  specified in able  3. 

Bond smtes Site slate Operation 

The complexity of the calculations depends on the width (i.e. the maximum width) 
of the finite lattice. Previous studies have used rectangular lattices so that the calcu- 
lation uses a sequence of fixed widths. The combinatorial relations presented in the 
foiiowtng section require hexagonai iattices so that the width wiii vary as the iattice 
is constructed. The rules presented here are entirely consistent with the possibilily of 
varying widths of lattice; configurations with bonds lying outside the lattice are given 
a weight of zero. An important difference from the square lattice calculations is that 
for a given width, a partially constructed lattice may be the immediate predecessor 
of more than one hexagonal lattice. Thus it is desirable to store some of the state 
vectors for future use. In constrast, if only rectangles are used, there is a unique 
successor at each step and so there is no need to ever store state vectors after they 
have been used once. 

3. Combining finite lattice results 

3.1. Rectangular lattice qvm" 

As in previous studies, we use g,,,, to denote the number of polygons that fit into 
a rectangle of width n. and length ~n but not into any smaller rectangle. On the 
triangular lattice, the requirement that the polygons touch the right-hand end of 
the rectangle means that for any width W and length L we are enumerating the 
quantities 

In contrast, in the earlier square lattice calculations (where the polygons were forced 
to span the lengths of the rectangles) it was the quantities that were enumerated: 
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These relations hold regardless of whether g,, refers to square lattice polygons or 
triangular lattice polygons. Thus on any lattice 

I G Enting and A J Gullmann 

G W L  = H W L  - H W , L - I .  

gmn = G m n  - 2Gm-1,n + Gm-?,n 

(3.3) 

(3.4) 

(3.5) 

gmn = Hmw.  (3.6) 

The inversion relation 

.."-A :" .I.- I" ..̂ .. I".+:,.- -la L w c u  U, U,= nyua,r I a L L I c c  LUJG &"GJ 

gmn = H m n  -2Hm-1," + Hm-2," - Hm,n-t + 2 H m - i , n - t  - H m - 2 , n - 1 .  

We write this as the linear combination 

ms<m,nr<n  

?b enumerate polygons we require the sum 

( 3 . 7 ~ )  

b,, = 1 and b,, = 2 for m < n. (3.7b) 

Thus the truncated expansion of C(z) will be expressed as a linear combination of 
H,, for m + n < P for some maximum semi-perimeter P. Figure 6 shows the 
smallest triangular lattice polygons not fitting in any rectangle of perimeter < 2P. 
There are two of them and they have P + 2 steps. Thus expansions using rectangles 
of width < W include (after use of rotational symmetly on the square lattice) all 

order 2 W + 3. Thus, as indicated in table 1, the series is correct to order 2 W + 2. 
However for each W, at order 2 W + 3 only the two polygons shown in figure 6 are 
missing and so one extra series term can be obtained by adding a correction of 2 to 
the first incorrect term. 

rect..?g!es of semi-peri.l?eter < 2w + i nnr? so wi!! hlVP *eir Erst hcerrect term 8t 

Flgum 6. n e  smallest polygon lhal fails to 61 Figure 1. Nolalion used in describing m n v a  
into a =tangle of widlh W .  ?his determines Ihal hexagons in terms of lhe lengths of the sides nl (a 

the number of ems lhal are given correctly bj lhe ng. 

finite lattice method using lectangular symmely will 
be 2 W + 2. However the polygon shown occurs in 
only S i  ways, four of which do fil within rectangles 
of width W and 60 lhe correction at order 2 W + 3 
Li always 2 and can be added in bj hand. 
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A test version of our computer program, using the combinatorics of rectangular 
lattice symmetry described here, was produced as one step in the development of 
the more powerful program implementing the formalism described in the following 
subsection. As reported hy Enting and Guttmann (1990). this test version enabled 
us to extend the known triangular lattice polygon series to 24 steps (or 25 with the 
mrrection). Running the program with various maximum widths, W, confirmed that 
the correction was indeed 2 at each stage. 

3.2. liiongular lattice ymmetty 

From figure 6, it is clear that the missing graphs that limit the series are quite narrow. 
They can readily be enumerated using transfer matrix techniques if the full triangular 
lattice symmetry can be exploited. Enting (1987) has described the combinatorics of 
the Iinite lattice method on the triangular lattice for Potts model expansions. We now 
generalize this work to the problem of enumerating polygons. 

The enumeration requires that, in principle, we must combine generating func- 
tions for polygons embedded in all convex hexagons up to some maximum size. 
me derivation below represents a constructive proof of this assertion.) We use 
the notation of Enting (1987) and denote a general convex hexagon by the sextuple 
n = [nl, n2, n3,n4, n 5 , n 6 ] ,  where, as shown in figure 7, n, is the number of bonds 
along side i .  

I 

We also define the breadth in each of three directions by 

b,  = n,  + nl = n4 + n5 
b, = n2 + n3 = n5 + n6 

b, = n3 + n4 = ne 4- n,. 

(3.W 

(3.86) 

(3.W 

These equations give WO independent constraints on the possible sets of n;. We have 
to include degenerate cases where some of the n, are zero. Far polygon enumeration 
we can ignore cases in which any of the bi are zero although such cases are required 
when applying the formalism of Enting (1987) to low-temperature expansions. 

n; < pmax. For 
any polygon, a, of perimeter p ( a )  < pmax there will be a minimal bounding hexagon 
n(a )  which will have perimeter p ( n )  < p,,,., We let g(n) denote the generating 
function for all polygons whose minimal bounding rectangle is n, i.e. 

We define a set A(p,, ,)  of hexagons whose perimeter is p = 

g(n) = (3.9) 
a:n(n)=n 

and so 

(3.10) 

The direct enumeration of the g ( 7 1 )  by transfer matrix techniques is not particularly 
convenient and so for n E A(?J,,,,,:) we enumerate h ( n )  which is the generating 
function for polygons that can he emhedded in hexagon n with at least one point in 
mntact with side n4. Thus 

(3.11) 
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where X ( n , m )  is the number of ways n can be embedded in m with the line 
segmanet n ,  lying within line segment m,. In particular X(n,n) = 1. In order 
to we the triangular lattice. symmetry to perform the calculatiom as efficiently as 
possible, we follow Enting (1987) and define a canonical representation for each of 
the classes of hexagons that are equivalent under the symmetry operations. The 
canonical representative of a class has the width n l  + n2 chosen to be. as small as 
possible; in the case of equality the minimum n2 is chosen and then the minimum n5 
and finally the minimum n6. If we let ~ ( n )  beithe number of hexagons equivalent 
to n when n is canonical and let ~ ( n )  = 0 otherwise then the polygon generating 
function becomes 

c(X) cz c Q ( n ) g ( T L )  correct to x p .  (3.12) 

I G Enting and A J Gutrmann 

- € A b )  

In order to write this in the form 

(3.13) 

we need the coefficients b ( 7 n )  which satisfy 

1 . Y ( n , ? n )  b ( 7 n )  = a ( n )  for n E A ( y m a x ) .  (3.14) 

Since X ( n , m )  is an upper triangular matrix, its inverse will also be an upper trian- 
gular matrix and so the solution will be of the form. 

m€AIPnl..) 

b ( m )  = Y ( 7 n , n ) a ( n ) .  (3.15) 
n2m 

Thus if, by definition, the a ( 7 ~ )  are non-zero only for canonical hexagons then the 
b(m) will be non-zero only for canonical hexagons and their subgraphs. (A complete 
proof of this assertion involves making use of the flexibility that is possible when 
constructing a total ordering of matrix indices from the partial ordering defined by 
the subgraph relation.) In table 1 we give, for each width, the number of convex 
hexagons of perimeter y < 3W + 2, the number of canonical hexagons in this set 
and the number of hexagons having non-zero weight. These numbers differ from 
those given by Enting (1987) because hexagons of breadth 0 have been excluded. 

As noted by Enting (1957) the matrix structure allows us to solve for the b ( n )  
by constructing one column of the matrix at a time and eliminating according to the 
following procedure: 

For all m in decreasing order: 
(i) construct the column X ( n , 7 n ) ;  and 
(ii) perform the elimination 4 7 ~ )  - a ( 7 ~ )  - X ( n , m ) a ( n i )  for all n C m. 
The final value of Q ( 7 L )  is the required solution b ( 7 ~ ) .  The elements X ( n , 7 n )  are 

constructed as described by Enting (1987) with the simplification that only aanslations 
in one direction must be considered, because of the constraint that the '4' edges must 
overlap. 

Once the combinatorial factors, 4 7 ~ ) .  have been obtained, the transfer matrix 
procedure must be modified to determine the generating functions h ( 7 z )  for hexagons 
n. The procedure was: 
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(1) Loop over all breadths nl + n2 < W .  
(2) For each breadth, loop over all neccessary values of n,. 
(3) Initialize a finite lattice. 
(4) For each n6 up to the maximum required, add a column to the finite lattice., 

adjusting the upper boundary as specified hy side n,. 
(5) For each n6. if non-zero values of n5 are needed, a duplicate copy of the 

partially completed generating function is stored for future use and the transfer matrix 
procedure progresses, adding n5 more columns, and adjusting the lower boundaly to 
follow side n5. F h e  upper boundary continues to he adjusted while n6 + n5 < n,.) 

(6) When all n5 values for the particular combintion of n , ,n2 ,n6  have been 
processed, the stored generating function is used to restart the procedure at step 4 
for the next n6 value. 

Compared with the earlier calculation, the use of triangular lattice symmetry 
involves looping mer  n, and n5 in addition to the loops over breadth and length 
that occur in each case. In addition the storage requirements when using triangular 
symmetry are greater because of the need to store a vector of partly constructed 
generating function to restart the procedure after branching to loop over n5. For 
these reasons going to width 11 required significantly more compting resources than 
the width 11 calculation wing rectangular symmetry. Going beyond width 11 would 
have required even more resources and so we have been limited to width 11, thereby 
enumerating polygons for p < 35. Retaining the information about areas imposes 
an additional cost in both storage and computation (the factor is proportional to the 
maximum area considered) and so our enumerations by area and perimeter have used 
only width 8. The results of these calculations are given in tables 5 and 6. 

4. Analysis of the series 

The calculations required a working array of about 75 Mhyte. They were run on 
an IBM 60001530 computer with 64 Mbyte of memory. As the array was randomly 
accessed, the execution time was largely dominated by disc transfer rates. As a result, 
the execution time was 30 days. In order to minimize storage, the calculations were 
carried out in 2-byte integer arithmetic. ' b o  distinct prime integers close to and 
smaller than 215 were chosen, and the calculations were carried out modulo each 
prime, The results were reconstructed, giving the answers nzodulo the product of the 
two primes, approximately 10'. This gave the nine least significant digits in the poly- 
gon mum, the most significant digits being obtained from differential approximants, 
as described in Guttmann and Enting (1988). Generating the coefficients of the two- 
variable area-perimeter generating function, we counted all polygons with area < 24 
triangles. The maximum perimeter of such polygons is 26 steps. Thus we obtained 
the early terms in both the polygon generating function 

and the two-variable generating function 

where p ,  is the number of n-step polygons with perimeter n, and P , , , , ~  is the number 
of polygons with perimeter m and 'area' n. TI ensure that both m and n are integers, 
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lhbk 5. For n, zn is Oe number d 
triangular lattice polygons mlh area of n unil hiangles and e, is the number with 
perimeter n. 

Enumeration of lriangular lattice polygon% 

n 2” C“ n C n  

1 
2 
3 
4 
5 
6 
7 
8 
9 
IO 
11 
12 
13 
14 
15 
16 
17 
18 
19 
U) 
21 
22 
23 
24 

2 
3 
6 
14 
36 
94 
250 
675 

I832 
5 w5 
13746 
37901 
I04 902 
291312 
811346 

2 265 905 
6 343 854 
17 801 383 
50 M 7  400 
141 U34248 
398 070 362 
112.5426581 
3 186 954 777 
9 039 483 589 

- 
- 

2 
3 
6 
I5 
42 
123 
380 
I212 
3 %6 
13 265 
45 144 
155 955 
545 690 

1930 635 
6897210 
24 852 576 
90 237 582 
329 896 569 

I213 528 736 
4489041 219 
16 690 581 534 
62346895571 

25 
26 
n 
28 
29 
30 
31 
32 
33 
34 
35 

233 893 503 330 
880918(193 866 
3 329 949 535 934 
12630175810%8 
48 M6 019 569 718 

183 383 553 173 255 
701 719913717994 
2 692 047 018 699 717 
103525767l7684506 
39 932 392 511 347 329 
I54 I26451 419554 156 

I 

we adopt the metric that the lattice has unit lattice spacing, which ensures that m k 
an integer, and that the area of an elementary triangle is also unity, rather than the 
correct Euclidean value of J3/4 .  

The series have been analysed by the methods employed previously in our study 
of square and honeycomb lattice polygons, and detailed in Guttmann (1987). Tb 
save space, we will not tabulate the various approximants as we did in our earlier 
papers. Suffice it to say that the results are quite comparable in apparent accuracy 
and rate of convergence. Our analysis used both first- and second-order differential 
approximants. Writing the polygon generating function as 

P(z) - A ( z ) ( l  - p ~ ) ’ - ~  (4.3) 

the estimates obtained for the critical point and critical exponent may be summarized 

1/p = 0.2409175 f 0.0000003 

l/p = 0.2409174 * 0.0000003 

lattice. Linear regression, coupled with the assumption a = 
biased estimate 

as: 

a = 0.49991 f 0.0002 

a = 0.49979 f 0.0004 

(first order) 

(second order). 

These results are comparable in accuracy to those obtained for the honeycomb 
exactly, yields the 

1/11 = 0.2409177f0.0000002, 
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lkbk 6. Numters of triangular lattin polygons pm,,, grouped ly area. m, and perimeter, 
n. 

3 1  
4 2  
5 3  
6 4  
6 6  
7 5  
7 7  
8 6  
8 8  
8 10 
9 7  

9 11 
9 13 
10 8 

9 .  9 

10 10' 
10 'I2 
10 14 
10 16 
I I  9 
11 11 
11 13 
11 15 
I1 17 
11 19 

2 
3 
6 
14 
1 
35 
6 
93 

3 
244 
110 
24 
2 

648 
399 

n 

135 
n 
3 

1722 
1352 
636 
198 
42 
6 

12 IO 
12 12 
12 14 
12 16 
12 18 
12 a0 
12 P 
12 24 
U 11 
U 13 
U U  
U 17 
U 19 
U 21 
13 25 
14 12 
14 14 
14 16 
14 18 
14 22 
14 24 

4 m  
4460 
2631 
1113 
356 
87 
14 
1 

12 360 
14 1% 

5 2 4  
2244 

48 
33 306 
43 899 
36 153 
22 893 
5 187 
1917 

10032 

774 

15 13 
15 15 
15 17 
15 19 
15 21 
15 23 
16 14 
16 16 
16 18 

16 22 
16 24 
17 15 
17 17 
17 19 
17 21 
17 23 
18 16 
18 18 

18 22 
18 24 

16 m 

18 m 

90 128 
134 336 
124992 
90926 
55 202 
28 992 

244 755 
406 608 
419 913 
341 796 
235 662 
142 737 
M6 780 
1221 348 
13811326 
1234 254 
943 710 
1 822 CV.8 
3646649 
4 469 850 
4 328 CO2 
3 604 749 

19 17 
19 19 
19 21 
19 23 
m 18 
m u )  
m z  
2 0 2 4  
21 19 
21 21 
21 23 
2 2 u )  
2 2 2 2  
22 24 
23 21 
2 3 2 3  
24 22 
24 24 
2 5 2 3  
26 ?A 

4992132 
10 837 U 4  
14 291 U6 
14 843 706 
U711572 
32086809 
45 278 676 
50 012 354 
37 746 064 
94713 162 
142 597 599 
lo4 123 868 
278 835 717 
448 067 CO7 

819091 488 
796 743 323 
2401443942 
2209449072 
6 136 210 072 

zm n5 834 

In order to estimate the correction-to-scaling exponent, we mnstructed the new gen- 
erating function P ( z ) ( l  - @ I ) - ~ / ~ ,  using the biased estimate of p .  Analysis of that 
generating function indicated a singularity at I = l / p  with an exponent of - $  (a 
divergence). This implies the presence of an analytic correction term to (4.3), so that 

P(I)  y A ( I ) ( ~  -PI)'-- + B ( I ) .  (4.4) 

We have also repeated the analysis reported in Enting and Guttmann (1989), in 
which we use the method of Baker and Hunter (1973) for the analysis of confluent 
exponents, which requires an accurate estimate of the critical point. There was no 
evidence of a confluent singularity. As with the other lattices, we therefore find that 
the correction-to-scaling exponent is as predicted by Nienhuis (1982, 19&1), and is 
A = 1.5. This is, therefore, indistinguishable from the analytic background term. 
We do, however, find it remarkable that there is no evidence of a term with exponent 
3 -a, which would follow from the expansion of A( x )  in (4.3). unless A'( 1 / p )  = 0. 

We have also estimated the amplitude, A ( l / @ )  by dividing out by the singular 
part and evaluating the resulting series a t  I = l / p  by both sequence extrapolation 
and Pifferential approximant methods. In this way we estimate A(triangle) = 0.6239, 
A(square) = 1.3289, A(honeycomb) = 3.0053. Another amplitude that is frequently 
encountered is defined by 
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Clearly, B = A/I’(-3/2). From these amplitudes, and amplitudes that are calcula- 
ble from previous work, we present in table 7 a summary of amplitudes for a variety of 
quantities that arise in the two-dimensional SAW (self-avoiding walk) problem. In all, 
we give results for seven distinct amplitudes on the three a m m a n  twodimensional 
lattices. In some cases the series is not available to estimate the required quantity, 
but in all such cases scaling or conformal invariance arguments allow the relevant 
quantity to be estimated. The quantities considered are: 

(i) the chain generating function C(z) = Ce,z”, 
(ii) the polygon generating function defined by (4.1), 
(iu) the mean-square end-to-end distance of an n-step SAW (R:),  
(iv) the mean-square radius of gyration of n-step polygons, (Ri)p, 
(v) the mean area of polygons of perimeter n, (U, , ) ,  

(vi) the mean-square radius of gyration of n-step SAWS ( R 2 )  ; and 
(vu) the mean-square distance of a monomer from the origm of an n-step SAW, 

The relevant amplitudes are defined as follows. 

I G Enting and A J Guttmunn 

9 .w 

( R 3 .  

e, = Apnn’l-’[1 + o( l ) ]  

p ,  = Epnn”-3[l +0(1)] 

(R:)  = Cn2”[1 +o(l)] 

(Ri )p  = Dn2”[1+o(l)] 

(a, ,)  = EnZY[ l  + o(l)] 

(R: ) ,  = Fn2”[1 + o(l)] 
( R k )  = Gn2”[1 +0(1)] 

where y = 43/32, a = 112, U = 314 and p = l / x c .  For the honeycomb 
lattice p = (2  + J2)1/2, for the square lattice our best estimate is p = 2.6381585 
(Guttmann and Enting 1988), and for the triangular lattice we have from the result 
above p = 4.150795. 

(even terms only for loose-packed lattices) 

(even terms only for loose-packed lattices) 

(even terms only for loose-packed lattices) 

Tnbk 7. EFtimates of ampliludes A ,  B, C, D, E ,  F and G respectively lhe amplitudes 
of the mefficients of the h a i n  generating function, the polygon generaling function, 
the meanquare end-wend distance of SAWS, the mean-square radius of gyration of 
polygons, the mean area of polygons of a given perimeter, the mean-square radius of 
gyration of mws, the meanquare dislance of a monomer f” lhe origin in a SAW. 

Precise definitions are given in the text. Quantities estimated h m  staling relations are 
shown parenthesized. 

Amplitude Honeycomb Square Iliangular 

A 
B 

1.145 1.178 1.186 
1.272 0.5623 0.264 

c (0.884) 0.770 0.711 
D (0.0249) 0.0563 (0.120) 
E (0.0625) 0.1416 0.302 
F (0.124) 0.108 0.0997 
G (0.389) 0.339 0.313 
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For the chain generating function we have 42 (unpublished), 34 (Masand ei al 
1992) and 22 terms (Guttmann and Wdng 1991) respectively in the series expansion 
for the honeycomb, square and triangular lattices. For the polygon generating function 
we have the series to n = 82 (Enting and Guttmann 1989), 56 (Guttmann and 
Enting 1988) and 35 (this paper) for the honeycomb, square and triangular lattices 
respectively. For (E:)  we have the series to order 29 and 22 for the square and 
triangular lattices (Guttmann and Wdng 1991), and for (R2) we have a 28 term series 
on the square lattice (Privman and Rudnick 1985). For (a,) we have the series up 
to n = 42 and 13 for the square (Enting and Guttmann 1990) and triangular lattices 
(shown later) respectively. For ( E : ) ,  and ( R L )  we have unpublished series data to 
28 terms on the square lattice and 19 terms on the triangular lattice, extending by 
several terms the earlier work of Guttmann and Yang (1990). 

From this data we have estimated the amplitudes A, E, C, D ,  E, F and G for 
all lattices for which data were available. Several methods of analysis were used, 
based on extrapolation algorithms and differential approximants (Guttmann 1989). 
The results are summarized in table 7. Any uncertainty is limited to one or two in 
the last quoted digit. Uncertainties in the critical p in ts  are too small to affect these 
estimates. 

There are several scaling relations that allow the table to be filled. Cardy (1988) 
has shown that ED = 5/(16r2).  This gives D for the honeycomb and triangu- 
lar lattices, from the estimate of E .  Privman and Redner (1985) have shown that 
C E / ( V U )  is a universal quantity, where U = 1 for a close-packed lattice and U = 2 
for a loose-packed lattice. v measures the unit-cell size, and is 1 (square) J 3 / 2  
(triangular) and 3J3 /2  (honeycomb). From our estimates we find this quantity to be 
0.2168 (triangular) and 0.2165 (square). This allows C(honeycomb) to be estimated. 
Camacho and Fisher (1990) have shown that E/D is universal, and Fisher et 01 
(1991) have estimated this quantity to be 2.511 +0.001. This allows E(honeycomb) 
to be estimated, and allows a second estimate of D(triangular), which agrees precisely 
with the estimate obtained from Cardy’s relation. From conformal invariance theory, 
Cardy and Saleur (1989) showed that F / C  and G/C are lattice independent for 
two-dimensional lattices, and also showed (after subsequent correction by Caracciolo 
el a1 1990) that 

F 2G 1 - - - + - = o  
c c 2  

where y, = 4/3 and yh = 91/48 are the known thermal and magnetic eigenvalues 
respectively for the two-dimensional SAW problem. These scaling relations permit F 
and G for the honeycomb lattice to be estimated. This completes table 7. 

These various relationships between the amplitudes raises the question whether 
more constant ratios could be identified. Sokal (private communication) points out 
that both F / C  and G / C  could be rational given the fact that their ratio is rational. 
Cardy (private communication) points out that F / C  and the mean-square area could, 
in principle, be evaluated. This follows from Zamolodchikov’s exact S-matrix for the 
O( n) model. An impressive amount of algebra would be required to carry out these 
calculations however. 

T h i n g  now to the two-variable generating function, we have repeated the analysis 
we carried out for the square lattice in Enting and Guttmann (1990) and Fisher el 
a1 (1991). The area generating function, P(  1 ,  y)  is found to diverge with exponent 
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zero (presumably corresponding to a logarithm or some power thereof) at y, = 
0.3394 f 0.0003. Hence 

I G Enfing and A J Gutfmunn 

P(l,Y)--(Y)+ WY)ldl-Y/Yo). (4.5) 

A range of rigorous results was presented for the square lattice version of this problem 
by Fsher ef a1 (1991), and these all hold mufuris mufundk in the triangular case. In 
particular, P(z,y) converges for y < 1 only when z < z,(y), and for y > 1 only 
for z = 1. The form of the phase boundary is qualitatively the same as for the 
square lattice. The argumenu in Fsher ef d can be repeated here with but slight 
modification. Note however that the minimum area n,,,," for k e d  perimeter m ir, 
nmln = m - 2 (with the metric that the lattice has unit lattice spacing and that the 
area of an elementary triangle is also unity). It follows that z,(y) - c/y as y 0, 
compared to the corresponding result z,(y) - c/y1la for the square lattice. (With 
a Euclidean metric the corresponding result would be x,(y) - c/yJ314). From the 
data in table 6 we have also calculated the mean area series, 

where Y = 3/4 and the amplitude N o  is found to be 0.1416 f 0.0003, as given in 
table I. 

5. Conclusions 

We have shown how the finite lattice method for enumerating self-avoiding polygons 
may be extended to the triangular lattice, and u e d  the method to greatly extend the 
existing polygon series. Indeed we have increased the number of polygons counted by 
a factor in excess of 10"'. We also present for the first time the coefficients of the two- 
variable generating function, giving polygons by both area and perimeter. Analysis of 
various series has permitted precise estimates of the critical points to be made, has 
permitted numerical confirmation of Nienhuis' (1982, 1984) estimate of the critical 
exponent a, and combined with previous work and xarious universal quantities, has 
allowed a complete tabulation of various critical amplitudes for self-avoiding walks 
and rings the three common two-dimensional lattices. We find no evidence of a 
non-anaiytic correction-to-scaling exponent from the polygon generating function. 
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